

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

Project Title Hybrid Eco Responsible Optimized European Solution

Project Acronym HEROES

Grant Agreement No. 956874

Start Date of Project 01.03.2021

Duration of Project 24 Months

Project Website heroes-project.eu

D2.2 Workflows containers

Work Package D2.2, Workflow containers

Lead Author (Org) Jose E. Torres (HPCNow!)

Contributing Author(s)
(Org)

Jose E. Torres (HPCNow!)

Reviewed by

Davide Pastorino (DoIT)
Emanuele Viale (DoIT)
Jorik Remy (UCit)
Sablin Amon (UCit)

Approved by Management Board

Due Date M12

Date 08/04/2022

Version V1.4

Dissemination Level

X PU: Public

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

https://heroes-project.eu/

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

2 | P a g e

Versioning and contribution history

Version Date Author Notes

0.1 01/02/2022 Jose E Torres (HPCNow!) Start document

0.2 02/02/2022 Jose E Torres (HPCNow!) Created document
structure

0.3 03/02/2022 Jose E Torres (HPCNow!) Added draft
information

0.4 09/02/2022 Jose E Torres (HPCNow!) Added draft
information

0.5 15/02/2022 Jose E Torres (HPCNow!) Added draft
information

0.6 16/02/2022 Jose E Torres (HPCNow!) Edited sections

0.7 17/02/2022 Jose E Torres (HPCNow!) Edited sections

0.8 22/02/2022 Jose E Torres (HPCNow!) Added code
examples

0.9 23/02/2022 Jose E Torres (HPCNow!) Edited sections

1.0 24/02/2022 Jose E Torres (HPCNow!), Pierre
Puigdomenech (HPCNow!)

Review and added
comments, edited
sections

1.1 25/02/2022 Jose E Torres (HPCNow!), Davide
Pastorino (DoIt), Benjamin Depardon
(UCit)

Review and added
comments

1.2 28/02/2022 Jose E Torres (HPCNow!), Davide
Pastorino (DoIt)

Review and added
comments

1.2 01/03/2022 Jose E Torres (HPCNow!) Edited sections

1.4 02/03/2022 Jose E Torres (HPCNow!) Completed
references and List
of Figures

1.5 03/03/2022 Jose E Torres (HPCNow!) Review corrections

1.6 04/03/2022 Jose E Torres (HPCNow!) Review corrections

1.7 08/03/2022 Sablin Amon (HPCNow!) Review

1.8 09/03/2022 Sablin Amon (HPCNow!) Review

1.9 11/03/2022 Benjamin Depardon (UCit), Sablin
Amon (UCit)

Review

2.0 14/03/2022 Jose E Torres (HPCNow!) Review corrections

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

3 | P a g e

2.1 15/03/2022 Jose E Torres (HPCNow!) Review corrections

2.2 16/03/2022 Jose E Torres (HPCNow!) New Section +
Review corrections

2.4 23/03/2022 Jose E Torres (HPCNow!) Complemented
sections + reviewed
corrections.

2.5 24/03/2022 Jorik Remy (UCit) Review

2.6 25/03/2022 Jose E Torres (HPCNow!) Updated image

3.0 08/04/2022 Corentin Lefèvre (Neovia) Final version
approved by the
Management Board

3.0 23/05/022 Alysée Cibil (Neovia) Modified version
(disclaimer changed)
following the
comments of the
mid-term review

Disclaimer

This document contains information which is proprietary to the HEROES Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the HEROES Consortium.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

4 | P a g e

Table of Contents

References and Applicable Documents .. 6

Acronyms and Abbreviations .. 8

Executive Summary ... 9

1 Introduction ... 10

1.1 Why do we need containers? .. 10

1.2 Benefits of containers ... 10

1.3 Container Limitations .. 10

1.4 Containers Basic Concepts .. 11

1.5 General container architecture ... 11

2 Singularity .. 12

2.1 Why Singularity? .. 12

2.2 Singularity runtime .. 13

2.3 Using Singularity containers .. 14

2.4 Inspecting Singularity containers .. 15

2.5 Singularity MPI .. 15

3 Building images .. 16

3.1 Approaches .. 17

3.2 Creating a Singularity definition file (SDF) .. 17

3.3 Building the image ... 19

3.4 Notes about created images ... 19

4 CAE Containers .. 20

4.1 Introduction ... 20

4.2 Containerized OpenFoam .. 21

4.3 Image creation ... 22

4.4 Execution ... 22

4.5 Singularity OpenFoam + Slurm .. 23

5 AI/ML Containers ... 23

5.1 Introduction ... 23

5.2 Containerized Tensorflow ... 24

5.3 Image creation ... 24

5.4 Execution ... 25

5.5 Singularity Tensorflow + Slurm ... 25

6 HEROES containers and workflows integration ... 25

6.1 Nextflow introduction ... 25

6.2 Singularity on Nextflow ... 26

6.3 Example containerized workflow diagram .. 27

7 Conclusion ... 28

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

5 | P a g e

List of Figures
FIGURE 1. CONTAINER ARCHITECTURE DIAGRAM .. 12
FIGURE 2. SINGULARITY ARCHITECTURE DIAGRAM ... 14
FIGURE 3. SINGULARITY MPI ARCHITECTURE DIAGRAM .. 16
FIGURE 4. SINGULARITY EXECUTION PLACEMENT EXAMPLE .. 28

List of Tables
TABLE 1. FEATURES BETWEEN SINGULARITY AND DOCKER CONTAINER TECHNOLOGIES .. 13

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

6 | P a g e

References and Applicable Documents

[1] HEROES Project website, https://heroes-project.eu/

[2] Containerization Explained, IBM Website,
https://www.ibm.com/cloud/learn/containerization

[3] Singularity, https://sylabs.io/singularity/

[4] Docker, https://www.docker.com/

[5] MPI, Message Passing Interface Wikipedia,
https://en.wikipedia.org/wiki/Message_Passing_Interface

[6] Open MPI, Open MPI Project website, https://www.open-mpi.org/

[7] MPICH, MPICH Project website, https://www.mpich.org/

[8] ORTED, orted man page, https://www.open-mpi.org/doc/v4.0/man1/orted.1.php

[9] Building Singularity Images, https://sylabs.io/guides/2.6/user-
guide/build_a_container.html

[10] Singularity Definition files, https://sylabs.io/guides/2.6/user-
guide/container_recipes.html

[11] Building Singularity images, https://sylabs.io/guides/2.6/user-
guide/build_a_container.html

[12] Docker and Singularity compatibility, https://sylabs.io/guides/2.6/user-
guide/build_a_container.html#downloading-a-existing-container-from-docker-hub

[13] OpenFOAM Official website, https://openfoam.org/

[14] Centos Operating System website, https://centos.org

[15] Slurm official website, https://slurm.schedmd.com/

[16] Artificial Intelligence Definition, https://en.wikipedia.org/wiki/Artificial_intelligence

[17] Machine Learning, https://en.wikipedia.org/wiki/Machine_learning

[18] TensorFlow website, https://www.tensorflow.org/

[19] RYAX website, https://ryax.tech/

https://heroes-project.eu/
https://www.ibm.com/cloud/learn/containerization
https://sylabs.io/singularity/
https://www.docker.com/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.open-mpi.org/
https://www.mpich.org/
https://www.open-mpi.org/doc/v4.0/man1/orted.1.php
https://sylabs.io/guides/2.6/user-guide/build_a_container.html
https://sylabs.io/guides/2.6/user-guide/build_a_container.html
https://sylabs.io/guides/2.6/user-guide/container_recipes.html
https://sylabs.io/guides/2.6/user-guide/container_recipes.html
https://sylabs.io/guides/2.6/user-guide/build_a_container.html
https://sylabs.io/guides/2.6/user-guide/build_a_container.html
https://sylabs.io/guides/2.6/user-guide/build_a_container.html#downloading-a-existing-container-from-docker-hub
https://sylabs.io/guides/2.6/user-guide/build_a_container.html#downloading-a-existing-container-from-docker-hub
https://openfoam.org/
https://centos.org/
https://slurm.schedmd.com/
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://www.tensorflow.org/
https://ryax.tech/

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

7 | P a g e

[20] Nextflow website, https://nextflow.io/

[21] EAR website, https://www.bsc.es/research-and-development/software-and-
apps/software-list/ear-energy-management-framework-hpc

https://on-demand.gputechconf.com/gtc/2018/presentation/s8368-containerizing-deep-
learning-with-singularity.pdf

https://chiroptical.dev/blog/building-tensorflow-gpu-images-for-hpc

https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-
containers-singularity-advanced.pdf

https://nextflow.io/
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://www.bsc.es/research-and-development/software-and-apps/software-list/ear-energy-management-framework-hpc
https://on-demand.gputechconf.com/gtc/2018/presentation/s8368-containerizing-deep-learning-with-singularity.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8368-containerizing-deep-learning-with-singularity.pdf
https://chiroptical.dev/blog/building-tensorflow-gpu-images-for-hpc
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

8 | P a g e

Acronyms and Abbreviations

Terminology/Acronym Description

AI Artificial Intelligence

API Application Programming Interface

ARM Advanced RISC Machines

CAD Computer Aided Design

CAE Computer-aided engineering

CFD Computational Fluid Dynamics

CPU Central Processing Unit

ELF Executable Linkable Format

GID Group Identifier

GPU Graphics Processing Unit

HEROES Hybrid Eco Responsible Optimized European Solution

HPC High-Performance Computing

ML Machine Learning

MPI Message Passing Interface

OS Operating System

OFED Open Fabrics Enterprise Distribution

ORTED Open RTE User-Level Daemon

PMI Process Management Interface

SDF Singularity Definition File

SIF Singularity Image File

SME Small and medium-sized enterprises

UID User Identifier

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

9 | P a g e

Executive Summary

The HEROES [1] project is aiming at developing an innovative European software solution
allowing industrial and scientific user communities to easily submit complex Simulation and
ML (Machine Learning) workflows to HPC (High Performance Computing) Data Centres and
Cloud Infrastructures. It will allow them to take informed decisions and select the best
platform to achieve their goals on time, within budget and with the best energy efficiency.

This document presents an approach for the containerization [2] of the software used on the
CAE and AI workflows selected as examples for the project.

The other tasks of the HEROES project rely on the workflows provided by this Work Package
as examples to provide an end-to-end prototype at the end of the project.

Existing and new workflows will be designed, deployed, and operated to allow AI/HPC users
to focus on their daily work taking advantage of encapsulating their applications inside
reusable container images.

The development of this document and steps is closely linked to the optimisation work of
WP3.

The scripts, templates and code described in this document will be constantly reviewed and
adapted to satisfy all emergent needs of the HEROES platform throughout the life of the
Project.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

10 | P a g e

1 Introduction
The objective of this document is to understand the process of containerizing the applications
used on the workflows that will be taken as examples in the HEROES project.

Containerization [2] is defined as a form of operating system virtualization through which
applications are run in isolated user spaces called containers, all using the same shared
operating system (OS).

A container is essentially a fully packaged and portable computing environment.

The HEROES platform uses containerization in all the steps of the workflows during the
execution phase. These containers are managed by the Application and Container
Management & Orchestration module, described in detail in D3.1.

The use of containers enables the immutability of the execution environment and the
portability of the software, independently of the destination of the execution. The technology
chosen to achieve this is Singularity [3], a well proven solution inside HPC and Cloud
environments.

More information about this technology is described in Section 2.

1.1 Why do we need containers?

- Simplify application building
- Application isolation
- Faster application deployment
- Validation and reproducibility of results
- Server consolidation/Server efficiency
- Deployment on bare metal or virtual machines

1.2 Benefits of containers

- Lightweight
- Low overhead
- Easier application sharing
- Reproducibility in different computing environments
- Container images facilitates modification, distribution, and execution

1.3 Container Limitations

- Architecture compatibility: always limited to CPU architecture and binary format (ELF)

- (you could add a level of hardware virtualization)

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

11 | P a g e

- Portability: containers in general are portable, but there are limitations
- Glibc / Kernel compatibility support
- Any other kernel / user land API compatibility (e.g., OFED)
- Bit rot: containers are subject to stagnation just as any operating system is
- Performance: there “may be” a slight theoretical performance penalty with utilizing

kernel namespaces
- File paths: the file system is different inside the container than outside the container

1.4 Containers Basic Concepts

A container is a standard unit of software that packages up code and all its dependencies, so
the application runs quickly and reliably from one computing environment to another.

Some of the terminology talking about containers is:

- Build or definition file: is a file defining how to build an image and their content
- Image: file that contains the application and all its dependencies
- Container: is an instantiation of an image
- Registry: a server where images are stored

Containers can be built to include all the programs, libraries, data and scripts such that an
entire application can be contained and either archived or distributed for others to replicate
no matter what version of Linux they are presently running.

Once an image container is built by a user, it can be shared over the entire HEROES platform
using the Data Management module, that stores the created container images and their
information.

This feature allows code reusability and collaborative development, allowing the access and
use of a vast catalogue of pre-built container images by the HEROES users, simplifying the
process to deploy applications.

1.5 General container architecture

Containers use a form of operating system (OS) virtualization. They leverage features of the
host operating system to isolate processes and control the processes access to CPUs,
memory, and disk space.

Each container shares the host OS kernel and, usually, the binaries and libraries, too. Sharing
OS resources, such as libraries, significantly reduces the need to reproduce the operating
system code—a server can run multiple workloads with a single operating system installation.

Generally, the container daemon is a root owned daemon which will separate out all possible
namespaces to achieve a fully emulated separation from host and other containers.

Figure 1 presents the difference between the execution of a virtual machine and of a
container (Docker in this case).

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

12 | P a g e

Figure 1. Container architecture diagram

2 Singularity

Singularity is a container technology. It allows the user to create and run containers that
package up pieces of software in a way that is portable and reproducible. By software we
mean that almost everything, from the operative system up, can be customized and run
regardless the hosting OS.

Singularity was created to run complex applications on HPC clusters in a simple, portable, and
reproducible way. It is an open-source project, with a friendly community of developers and
users. The user base continues to expand, with Singularity now used across industry and
academia in many areas of work.

2.1 Why Singularity?

- Verifiable reproducibility and security, using cryptographic signatures, an immutable
container image format, and in-memory decryption.

- Integration over isolation by default. Easily make use of GPUs, high speed networks,
parallel filesystems on a cluster or server by default.

- Mobility of compute. The single file SIF container format is easy to transport and
share.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

13 | P a g e

- A simple, effective security model. You are the same user inside a container as outside,
and cannot gain additional privilege on the host system by default.

- Directly import Docker [4] images and seamlessly run them with the additional
features provided by Singularity.

- Consolidating a workflow into a Singularity container simplifies distribution and
repeatability of scientific results.

Table 1 presents a comparison between Singularity and Docker. Singularity is very well fitted
for the use cases of HEROES: it has been built from the ground up for HPC/AI use cases and
with security as a strong requirement.

Table 1. Features between Singularity and Docker container technologies

Feature Singularity Docker

Multiple containers can be run on same hardware Yes Yes

Can be created and destroyed quickly Yes Yes

Do not need entire OS, only a core run time Yes Yes

Transferable to other machines easily Yes Yes

Image Format Single file Layered file

Use with HPC schedulers Yes No

Native support for MPI Yes No

Support for GPUS Yes No

Root owned Daemon process No Yes

2.2 Singularity runtime

When you run a container, the processes in the container will run as your user account, this
happens because there is no root daemon process and no escalation of privileges within the
container, just because the Singularity execution binary (sexec/sexec-suid) is executed via
execv() provoking that the process itself is replaced by the process inside the container.

Singularity dynamically writes UID and GID information to the appropriate files within the
container, and the user remains the same inside and outside the container.

Another fact is that the container file system is mounted using the nosuid option, and
processes are started with the PR_NO_NEW_PRIVS flag set. This means that even if you run
sudo inside your container, you won’t be able to change to another user, or gain root
privileges by other means. This approach provides a secure way for users to run containers
and greatly simplifies things like reading and writing data to the host system with appropriate
ownership.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

14 | P a g e

Figure 2. Singularity architecture diagram

Additional blocks are in place to prevent users from escalating privileges once they are inside
of a container.

Namespaces are created depending on configuration and process requirements, where
Singularity only isolates the mount namespace, and bind mount several host directories such
as $HOME and /tmp into the container at runtime by default.

These measures allow users to interact with the host system from within the container in
sensible ways, where the CLONE_FS namespace is used to virtualize completely the new root
filesystem.

2.3 Using Singularity containers

In this section is described some of the commands that can be used on Singularity to perform

different actions using containers and images.

• Obtaining a shell:

singularity shell lolcow_latest.sif

• Exec: run a given command inside the container:

singularity exec lolcow_latest.sif fortune

• Download an image

singularity pull library://godlovedc/funny/lolcow

• Run the .sif file image

singularity run lolcow_latest.sif

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

15 | P a g e

2.4 Inspecting Singularity containers

The Singularity container images are defined by files called definition files. Singularity
provides commands to check this definition file from a built Singularity image.

singularity inspect --deffile lolcow_latest.sif

2.5 Singularity MPI

The Message Passing Interface (MPI) [5] is a standard extensively used by HPC applications to
implement various communications across compute nodes of a single system or across
compute platforms.

Singularity provides support for the two major Open-Source implementations, OpenMPI [6]
and MPICH [7].

Although there are several ways of carrying this out, the most popular way of executing MPI
applications installed in a Singularity container is to rely on the MPI implementation available
on the host.

Here are described some of the points of the OpenMPI /Singularity workflow in detail (see
Figure 3):

- The MPI launcher (e.g., mpirun, mpiexec) is called by the resource manager or the
user directly from a shell.

- Open MPI then calls the process management daemon (ORTED [8]).

- The ORTED process launches the Singularity container requested by the launcher
command, as such mpirun.

- Singularity builds the container and namespace environment.

- Singularity then launches the MPI application within the container.

- The MPI application launches and loads the OpenMPI libraries.

- The OpenMPI libraries connect back to the ORTED process via the Process
Management Interface (PMI).

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

16 | P a g e

Figure 3. Singularity MPI architecture diagram

Assuming the container with MPI and the application is already built, the mpirun command
to start the application looks like:

$ mpirun -n <NUMBER_OF_RANKS> singularity exec <PATH/TO/MY/IMAGE>

</PATH/TO/BINARY/WITHIN/CONTAINER>

3 Building images
As a platform that is widely used in the scientific/research software and HPC communities,
Singularity provides great support for reproducibility.

If a Singularity image is built for some scientific software, others are able to reproduce exactly
the same environment again.

Singularity follows the “Configuration as code” approach and a container configuration can
be stored in a file which can then be committed to a version control system alongside other
code.

This file can then be used to reproduce a container with the same configuration at some point
in the future.

In HEROES, Singularity images are integrated by the Workflows and Job execution module,
based on Nextflow [20], allowing the execution of processes using Singularity images as
instantiated containers with all the software needed for the entire workflow execution.

Once the images were built, the resulting files were distributed across the HEROES Remote
pseudo-filesystem (HRFS), more detailed on the D3.2 Deployment Suite, publishing the
required images to execute the workflow on all the machines involved on the complete
execution.

To use Singularity images on the HEROES platform, no extra configuration is needed in the
image itself, as the Workflows and Job execution module allows to execute any kind of image
transparently for the end-user.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

17 | P a g e

3.1 Approaches

There are various approaches to building Singularity [9] images:

• Building within a sandbox: The image is built interactively within a sandbox
environment. This means obtaining a shell within the container environment and
installing and configuring all the packages and code before exiting the sandbox and
converting it into a container image.

• Building from a Singularity Definition File: In this approach, the entire Singularity
images are auto-described on a single text file. Later, the Singularity image is built
following all the instructions and commands defined inside this file.

Definition files are small text files, but container files may be very large multi-gigabyte files
that are difficult and time consuming to move around.

This makes Definition files ideal for storing in a version control system along with their
revisions.

Currently, HEROES platform assumes that the user provides the Singularity images files built
by themselves, uploading all required Singularity Image Files (SIF) as part of the dataset used
on the workflow execution.

All the data provided initially by the user, is copied and stored by the Data Management
module, and stored on the assigned directories on the HRFS, allowing to reach and use these
images from directories where the user has permissions.

For the moment, a service on HEROES to offer to build the images for the users is still under
analysis and is not implemented. A possible approach is to provide an internal Gitlab service
with a CI/CD pipeline to trigger the build of a Singularity image when the code of a Singularity
definition file is provided.

3.2 Creating a Singularity definition file (SDF)

A Singularity Definition File, SDF [10] is a text file that contains a series of statements that are
used to create a container image.

In line with the “Configuration as Code” approach mentioned above, the SDF can be stored in
a code repository alongside the application code and used to create a reproducible image.

This means that for a given commit in the repository, the version of the SDF present at that
commit can be used to reproduce a container with a known state.

Singularity uses an SDF to bootstrap a new container.

An example of an SDF could look like this:

Bootstrap: docker

From: ubuntu:20.04

%post

 apt-get -y update && apt-get install -y python

%runscript

 python -c 'print("Hello World! Hello from our custom Singularity

image!")'

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

18 | P a g e

A definition file has a number of optional sections, specified using the % prefix, that are used
to define or undertake different configurations during different stages of the image build
process.

3.2.1.1 Bootstrap line

 The Bootstrap line is similar to prefixing an image path when using the Singularity pull
command.

A range of different bootstrap options are supported: registries, DockerHub, etc.

3.2.1.2 %post section

This section is where you can download files from the internet with tools like git and wget,
install new software and libraries, write configuration files, create new directories, etc.

3.2.1.3 %runscript section

This section is used to define a script that should be run when a container is started based on
this image using the singularity run command.

3.2.1.4 %setup section

During the build process, commands in this section are first executed on the host system
outside of the container after the base OS has been installed.

3.2.1.5 %files section

In this section, allows to copy files into the container with greater safety than using the
%setup section.

3.2.1.6 %environment section

This section allows you to define environment variables that will be set at runtime.

3.2.1.7 %labels section

This section is used to add metadata to the file (/.singularity.d/labels.json) within your
container.

3.2.1.8 %startscript section

Similar to the %runscript section, the content of the %startscript section is written to a file
within the container at build time.

3.2.1.9 %runscript section

The content of this section is written to a file within the container that is executed when the
container image is run (either via the singularity run command or by executing the container
directly as a command). When the container is invoked, arguments following the container
name are passed to the runscript. This means that you can (and should) process arguments
within your runscript.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

19 | P a g e

3.2.1.10 %help section

Any text in the %help section is transcribed into a metadata file in the container during the
build.

3.2.1.11 %test section

This section runs at the very end of the build process to validate the container using a method
of your choice.

3.3 Building the image

The image can be built using this command [11]:

singularity build my_test_image.sif my_test_image.def

The above command requests the building of an image based on the my_test_image.def file
with the resulting image saved to the my_test_image.sif file.

Note that administrative privileges are required to build the image.

The result of the previous command is a my_test_image.sif Singularity image file in the
current directory.

3.4 Notes about created images

3.4.1.1 Inspecting the image

This command shows how a container image was built, obtaining the definition file from the
image file.

singularity inspect --deffile lolcow_latest.sif

You can drop the standard output to a file to obtain the SDF of the container:

singularity inspect --deffile lolcow_latest.sif >> lolcow_latest.def

These commands are very useful to understand how an image was built, allowing us to edit it
directly or modify it to obtain a different behaviour from this base.

3.4.1.2 Docker compatibility

Singularity allows the user to build images directly from Docker [4] containers, allowing a
Docker Hub endpoint to build an image from the registry [12].

sudo singularity build container.img docker://ubuntu

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

20 | P a g e

3.4.1.3 Cluster platform configuration for running Singularity containers

It is recommended to move the created .sif file to a platform with an installation of Singularity,
rather than attempting to run the image pulling the container from the registry.

 This avoids problems related to limited connectivity and machines with restricted access to
the Internet domain.

From the HEROES platform, all the connections to the HPC machines are achieved using the

SSH protocol, and the outbound connections from the login nodes are restricted, so, pulling

the Singularity images from an external registry is not always allowed.

In order to provide the images required to execute the different steps of a workflow, the

images should be copied previously from the HEROES platform as a source, using just tools

that relies on the SSH connectivity.

In this process, the users don’t need to copy manually anything to the remote locations, as

the HEROES platform takes care on copying the required images automatically before

executing the workflow.

This image files movement is managed by the Workflows and Job management module in

combination with the Data Management Module inside the HEROES platform.

3.4.1.4 Signing containers

Singularity supports signing containers. This allows a digital signature to be linked to an image
file. This signature can be used to verify that an image file has been signed by the holder of a
specific key and that the file is unchanged from when it was signed.

4 CAE Containers

4.1 Introduction

The numerical simulation of the Computational Fluid Dynamics is a very well-known strategy
to optimize engineering designs in multiple fields inside Computational Aided Engineering.

Both the aerodynamical and the thermal behaviour can be predicted, leading to an optimal
manufacturing design.

High Performance Computing (HPC) simulation tools are capable to run these simulation
routines in a time compatible with the time to market of any product developed by
manufacturing SMEs or big companies.

In this regard, HPC simulation tools can be seen as enabling technologies for the use of CFD
and increasing the market share of any related product.

In particular, for any CFD model several steps are needed to be accomplish one after the
other, before obtaining the final result, some of these steps are requiring manual interaction
of the user.

The objective of HEROES is to help CFD users to accomplish the final result in an easier way,
while optimising the HPC platform and tools.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

21 | P a g e

The ultimate objectives are:

• To reduce the human interaction by using automation during manual steps

• To optimise the use of HPC resources

• To reduce the time needed to accomplish one CFD workflow

In this context, the use of containerized applications makes it possible to define concrete
environments, allowing the same execution to be ported and reproduced on different
computational locations.

As we defined on the D2.1, for the selected CAE workflow to exemplify how a CFD user
workflow is executed on the HEROES platform, the OpenFoam program is required, as is
needed to execute the proposed example to run an aerodynamic simulation against a 3D
model.

In the next sections is explained how the application can be defined and containerized to be
used later on the HEROES platform using the Singularity technology, and how can be tested
locally before uploading it to the platform.

4.2 Containerized OpenFoam

For obtaining a Singularity container image including a valid OpenFoam [13] version, a
definition file (heroes-openfoam-7.def) is created with a baseline based on a Centos [14]
Docker image.

On the post section, additional dependencies are installed, like MPI and the OpenFoam
version to include.

Bootstrap: docker

From: centos:7

%help

 This recipe provides an OpenFOAM-7 environment installed

 with GCC and OpenMPI-4.

%post

 ### Install prerequisites

 yum groupinstall -y 'Development Tools'

 yum install -y wget git openssl-devel libuuid-devel

 ### OpenFOAM version

 pkg=OpenFOAM

 vrs=7

 ### Install under /opt

 base=/opt/$pkg

 mkdir -p $base && cd $base

 ### Download OF

 wget -O - http://dl.openfoam.org/source/$vrs | tar xz

 mv $pkg-$vrs-version-$vrs $pkg-$vrs

 ### Download ThirdParty

 wget -O - http://dl.openfoam.org/third-party/$vrs | tar xz

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

22 | P a g e

 mv ThirdParty-$vrs-version-$vrs ThirdParty-$vrs

 ### Change dir to OpenFOAM-version

 cd $pkg-$vrs

 ### Get rid of unalias otherwise singularity fails

 sed -i 's,FOAM_INST_DIR=$HOME\/$WM_PROJECT,FOAM_INST_DIR='"$base"',g'

etc/bashrc

 sed -i 's/alias wmUnset/#alias wmUnset/' etc/config.sh/aliases

 sed -i '77s/else/#else/' etc/config.sh/aliases

 sed -i 's/unalias wmRefresh/#unalias wmRefresh/' etc/config.sh/aliases

 ### Compile and install

 . etc/bashrc

 ./Allwmake 2>&1 | tee log.Allwmake

 ### Clean-up environment

 rm -rf platforms/$WM_OPTIONS/applications

 rm -rf platforms/$WM_OPTIONS/src

 cd $base/ThirdParty-$vrs

 rm -rf build

 rm -rf gcc-* gmp-* mpfr-* binutils-* boost* ParaView-* qt-*

 strip $FOAM_APPBIN/*

 ### Source bashrc at runtime

 echo '. /opt/OpenFOAM/OpenFOAM-7/etc/bashrc' >>

$SINGULARITY_ENVIRONMENT

%test

 . /opt/OpenFOAM/OpenFOAM-7/etc/bashrc

 icoFoam -help

%runscript

 echo

 echo "OpenFOAM installation is available under $WM_PROJECT_DIR"

 echo

4.3 Image creation

The build of the previous definition file can be achieved by this command, obtaining a valid
Singularity image (heroes-openfoam-7.sif) including all the software stack needed to run
OpenFoam.

singularity build heroes-openfoam-7.sif heroes-openfoam-7.def

4.4 Execution

The following example shows how to execute a sample OpenFOAM command using the
container image, confirming that the image is built including the required toolset:

singularity exec heroes-openfoam-7.sif simpleFoam -help

Usage: simpleFoam [OPTIONS]

options:

 -case <dir> specify alternate case directory, default is the cwd

 -fileHandler <handler> override the fileHandler

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

23 | P a g e

 -hostRoots <(((host1 dir1) .. (hostN dirN))> slave root directories (per

host) for distributed running

 -libs <(lib1 .. libN)> pre-load libraries

 -listFunctionObjects List functionObjects

 -listFvOptions List fvOptions

4.5 Singularity OpenFoam + Slurm

This section shows how is possible to use the Singularity image to launch a Slurm [15] job to
execute an OpenFoam program:

##!/bin/bash

#SBATCH --job-name=slurm-heroes-openfoam

#SBATCH --output=slurm-heroes-openfoam_%j.out

#SBATCH --cpus-per-task=1

#SBATCH --gres gpu:1

#SBATCH --time=1:00:00

OF_IMG=heroes-openfoam-7.sif

OF_DIR=$WORK/openfoam/

mkdir $SCRATCH/motorBike_data

cp -v motorBike.tar.gz $SCRATCH/motorBike_data/

module load singularity

srun singularity exec --home $WORK:/home --bind $LSTOR:/tmp $OF_IMG \

 SimpleFoam $SCRATCH/motorBike_data/ --batch_size=128 \

 --max_steps=100000

5 AI/ML Containers

5.1 Introduction

Artificial intelligence (AI) [16] refers to the simulation of human intelligence in machines that
are programmed to think like humans and mimic their actions.

The ideal characteristic of AI [15] is its ability to rationalize and take actions that have the best
chance of achieving a specific goal.

Machine learning (ML) [17] is a subfield of artificial intelligence. The goal of ML is to make
computers learn from the data that an end user gives them and adapt to new data without
being assisted by humans. The resulting program, consisting of the algorithm and associated
learned parameters, is called a trained model.

Within ML, Deep learning techniques enable this automatic learning through the absorption
of huge amounts of unstructured data such as text, images, or video.

The objective of HEROES is to help ML users to accomplish the final result in an easier way,
while optimising the ML environment and tools.

The ultimate objectives are:

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

24 | P a g e

• To reduce the human interaction by using automation during manual steps.

• To optimise the use of HPC resources.

• To reduce the time needed to accomplish one ML workflow.

In this context, the utilization of containerized applications allows to define concrete ML
environments, allowing to port and reproduce the same execution on different
computational locations.

As we defined on the D2.1, for the selected ML workflow to exemplify how a machine learning
user workflow is executed on the HEROES platform, the Tensorflow library is required, as is
needed to execute the proposed example to run an object recognition process against a video
file.

In the next sections is explained how the application can be defined and containerized to be
used later on the HEROES platform using the Singularity technology, and how can be tested
locally before uploading it to the platform.

5.2 Containerized Tensorflow

For obtaining a Singularity container image including a valid Tensorflow [18] version, a
definition file (heroes-tensorflow-latest.def) is created with a baseline based on the official
Tensorflow Docker image.

This file is based on the official Docker image from Tensorflow, later, the post section includes
additional dependencies.

bootstrap: docker

from: tensorflow/tensorflow

%help

 This Singularity definition contains a TensorFlow installation

%post

 pip install pillow matplotlib urllib3 opencv-python

 python -c "import platform; print('Python: ',platform.python_version())"

 python -c "import tensorflow as tf; print('TensorFlow: ',tf.__version__)"

%environment

 export LC_ALL=C

%runscript

5.3 Image creation

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

25 | P a g e

The build of the previous definition file can be achieved by this command, obtaining a valid
Singularity image (heroes-tensorflow.sif). Including all the software stack needed to run
Tensorflow.

singularity build heroes-tensorflow-latest.sif heroes-tensorflow -

latest.def

5.4 Execution

Following example shows how to execute a sample Tensorflow command using the container
image:

singularity exec heroes-tensorflow -latest.sif python -c import tensorflow

as tf; print('TensorFlow: ',tf.__version__)

5.5 Singularity Tensorflow + Slurm

This section shows how is possible to use the Singularity image to launch a Slurm job to
execute a Tensorflow program:

##!/bin/bash

#SBATCH --job-name=slurm-heroes-tensorflow

#SBATCH --output=slurm-heroes-tensorflow_%j.out

#SBATCH --cpus-per-task=1

#SBATCH --gres gpu:1

#SBATCH --time=1:00:00

TF_IMG=heroes-tensorflow.sif

OF_DIR=$WORK/tensorflow/mobilenet_ssd_v2

mkdir $SCRATCH/tensorflow_data

cp -Ra $PROJECTDIR/tensorflow_data/ $SCRATCH/tensorflow_data/

module load singularity

srun singularity exec --home $WORK:/home --bind $SCRATCH:/tmp $TF_IMG

python $OF_DIR/ssd_mobilenet_v2_coco.py SCRATCH/tensorflow_data/

6 HEROES containers and workflows integration

6.1 Nextflow introduction

The importance of the Workflows and Job Management module was widely described on the
D2.1, assuming the use of RYAX [19] as the Workflow Manager tool in a first iteration.

In recent changes over the architecture and the software used, RYAX was replaced by
Nextflow [20], as it offers some native integrations for some technologies used on the HEROES
platform and some other benefits.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

26 | P a g e

Some points that are considered on using Nextflow are:

- Fast prototyping

- Unified parallelism. Based on the dataflow programming model simplifying writing
complex distributed pipelines.

- Stream oriented. allowing to handle complex stream interactions easily.

- Support for different jobs schedulers

- Reproducibility and portability using Singularity and Docker

6.2 Singularity on Nextflow

As this document describes the containerization of the application on HEROES platform, this
section will focus on showing how Singularity can be used and integrated on Nextflow
workflows.

Nextflow provides built-in support for Singularity. This allows to control the execution
environment of the processes in your workflow by running in isolated containers along all
their dependencies.

As we described in Section 3, Singularity images can contain any tool or piece of software you
may need to carry out a process execution.

As is described before, the Singularity container image files provided by the users don’t need
to contain any software or configuration to be integrated on the HEROES platform.

All the configuration needed for the execution is defined outside them, in the different
modules that conforms the platform, so the images should contain exclusively the software
needed to run the applications or programs, keeping them simpler to configure, share and
use.

Every time that a Nextflow workflow script launches a process execution, Nextflow will run it
into a Singularity container created by using one specified image, in practice, Nextflow will
automatically wrap your processes and run them by executing the singularity run command
with the image you have provided and later is executed using the job scheduler that you
specified.

Singularity images can be defined in a Nextflow configuration file, just as the example showed
below:

process.container = '/path/to/singularity.img'

singularity.enabled = true

It is possible to specify a different Singularity image for each process definition in your
workflow script if is needed for the global workflow execution.

For example, let’s suppose you have two processes named foo and bar. You can specify two
different Singularity images specifying them in the nextflow.config file as shown below:

process {

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

27 | P a g e

 withName:foo {

 container = 'image_name_1'

 }

 withName:bar {

 container = 'image_name_2'

 }

}

singularity {

 enabled = true

}

By default, when a container name is specified, Nextflow checks if an image file with that
name exists in the local file system. If that image file exists, it’s used to execute the container.

The Singularity configuration scope controls how Singularity containers are executed by
Nextflow.

Different settings are available to configure Singularity scope on Nextflow:

• enabled: Turn this flag to true to enable Singularity execution (default: false).

• engineOptions: This attribute can be used to provide any option supported by the
Singularity engine.

• envWhitelist: Comma separated list of environment variable names to be included in
the container environment.

• runOptions: This attribute can be used to provide any extra command line options
supported by the singularity exec.

• noHttps: Turn this flag to true to pull the Singularity image with http protocol (default:
false).

• autoMounts: When true Nextflow automatically mounts host paths in the executed
container. It requires the user bind control feature enabled in your Singularity
installation (default: false).

• cacheDir: The directory where remote Singularity images are stored. When using a
computing cluster, it must be a shared folder accessible to all computing nodes.

• pullTimeout: The amount of time the Singularity pull can last, exceeding which the
process is terminated (default: 20 min).

6.3 Example containerized workflow diagram

Some of the purposes of using Singularity containers are described above in Section 2.1:
portability, immutability, lightness, etc.

In HEROES, the approach is to containerize different steps of the workflows to take advantage
of these benefits from containerization technology to run the desired applications and
programs.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

28 | P a g e

In Figure 4Erreur ! Source du renvoi introuvable., we display an example of a possible user
workflow, marking in red squares the steps where potentially the containerized applications
and programs are executed inside Singularity containers.

Figure 4. Singularity execution placement example

7 Conclusion
This document presented the containers and their definitions that the workflows in
SINGULARITY project will use as examples throughout the project.

Two containers and their definitions are represented for two workflows:

• One including a typical program on the HPC field (airflow simulation through CFD
simulations, OpenFoam containerized).

• One in the AI field (image recognition through machine learning, using Tensorflow).

An introduction on HPC containers, and the steps for define and build the container images
on Singularity including the software used on the workflows, have been described, allowing
an introductory definition and procedure that could be used to the image creation and
application containerization for future steps in the project.

The application containerization for the workflows, represents a straight-forward mechanism
to build, encapsulate, manage, and deploy functional HPC and ML applications inside
workflows, simplifying the process for the end-users and obtaining some of the benefits on
using containers like portability, immutability, etc.

D2.2 Workflows containers

The HEROES project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 956874. The JU receives support from the European Union's Horizon 2020 research and innovation
programme and France, Spain, Italy.

29 | P a g e

The use of Singularity containers makes the execution of each step “independent” of the
target platform.

The whole workflow execution using the containers here, will be handled by the Workflows
and Job Management module described on the D2.1, integrated with other platform modules
as the D3.2 Deployment Suite, to provide a proper environment to run the execution, and
also the HEROES runtime.

After each scheduled container execution on a workflow, some logs and metrics are saved
based on different parameters such as frequencies, power, etc. obtained by the Telemetry
and accounting module, based mainly on the EAR suite integrated as the HEROES runtime.

On the D2.1 deliverable, we started considering RYAX as the initial Workflow manager, but
lately was substituted by Nextflow, (described briefly on Section 7) as it’s an Open-Source
solution and natively supports some of the technologies used on the HEROES platform.

The goal of SINGULARITY is to enable future developments and technology democratization,
by providing user-friendly and flexible workflow tools. The main advantages of the application
containerization using the SINGULARITY platform we envision are:

• Allow easy parameterized HPC simulations execution, allowing exploration of new
models, parameters…

• The creation of containers for each step, allows their reutilization and generalization
across the entire architecture.

• Simplification of usage for the end-users by providing “pre-packaged” workflows and
applications. The usage of containerization makes the whole process of simulation
easier, lowering the learning curve and even hiding the execution complexity.

• The containerization of applications allows to share and distribute complete images
against other users on the platform, reducing installation and configuration times.

